An Empirical Comparison of Tree-Based Learning Algorithms: An Egyptian Rice Diseases Classification Case Study
نویسندگان
چکیده
Applications of learning algorithms in knowledge discovery are promising and relevant area of research. The classification algorithms of data mining have been successfully applied in the recent years to predict Egyptian rice diseases. Various classification algorithms can be applied on such data to devise methods that can predict the occurrence of diseases. However, the accuracy of such techniques differ according to the learning and classification rule used. Identifying the best classification algorithm among all available is a challenging task. In this study, a comprehensive comparative analysis of a treebased different classification algorithms and their performance has been evaluated by using Egyptian rice diseases data set. The experimental results demonstrate that the performance of each classifier and the results indicate that the decision tree gave the best results. Keywords—Data Mining, Classification, Decision Trees, Bayesian Network, Random Forest, Rice Diseases.
منابع مشابه
Comparison of Machine Learning Algorithms for Broad Leaf Species Classification Using UAV-RGB Images
Abstract: Knowing the tree species combination of forests provides valuable information for studying the forest’s economic value, fire risk assessment, biodiversity monitoring, and wildlife habitat improvement. Fieldwork is often time-consuming and labor-required, free satellite data are available in coarse resolution and the use of manned aircraft is relatively costly. Recently, unmanned aeria...
متن کاملMining the Classification Rules: The Egyptian Rice Diseases as Case Study
Applications of learning algorithms in knowledge discovery are promising and relevant area of research. It is offering new possibilities and benefits in real-world applications, helping us understand better mechanisms of our own methods of knowledge acquisition. Decision trees is one of learning algorithms which posses certain advantages that make it suitable for discovering the classification ...
متن کاملSparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains
In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...
متن کاملMining the Classification Rules for Egyptian Rice Diseases
Applications of learning algorithms in knowledge discovery are promising and relevant area of research. It is offering new possibilities and benefits in real-world applications, helping us understand better mechanisms of our own methods of knowledge acquisition. Decision trees is one of learning algorithms which posses certain advantages that make it suitable for discovering the classification ...
متن کاملKnowledge discovery from patients’ behavior via clustering-classification algorithms based on weighted eRFM and CLV model: An empirical study in public health care services
The rapid growing of information technology (IT) motivates and makes competitive advantages in health care industry. Nowadays, many hospitals try to build a successful customer relationship management (CRM) to recognize target and potential patients, increase patient loyalty and satisfaction and finally maximize their profitability. Many hospitals have large data warehouses containing customer ...
متن کامل